首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5058篇
  免费   580篇
  国内免费   509篇
化学   3318篇
晶体学   22篇
力学   231篇
综合类   45篇
数学   69篇
物理学   2462篇
  2024年   5篇
  2023年   73篇
  2022年   159篇
  2021年   198篇
  2020年   237篇
  2019年   170篇
  2018年   141篇
  2017年   259篇
  2016年   307篇
  2015年   272篇
  2014年   353篇
  2013年   360篇
  2012年   407篇
  2011年   319篇
  2010年   249篇
  2009年   296篇
  2008年   303篇
  2007年   308篇
  2006年   249篇
  2005年   219篇
  2004年   227篇
  2003年   165篇
  2002年   156篇
  2001年   93篇
  2000年   89篇
  1999年   92篇
  1998年   90篇
  1997年   86篇
  1996年   48篇
  1995年   47篇
  1994年   36篇
  1993年   35篇
  1992年   21篇
  1991年   23篇
  1990年   23篇
  1989年   11篇
  1988年   8篇
  1987年   7篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有6147条查询结果,搜索用时 62 毫秒
81.
《中国化学快报》2021,32(10):3057-3060
Intracellular pH is a key parameter related to various biological and pathological processes. In this study, a ratiometric pH fluorescent sensor ABTT was developed harnessing the amino-type excited-state intramolecular proton transfer (ESIPT) process. Relying on whether the ESIPT proceeds normally or not, ABTT exhibited the yellow fluorescence in acidic media, or cyan fluorescence in basic condition. According to the variation, ABTT behaved as a promising sensor which possessed fast and reversible response to pH change without interference from the biological substances, and exported a steady ratiometric signal (I478/I546). Moreover, due to the ESIPT effect, large Stokes shift and high quantum yield were also exhibited in ABTT. Furthermore, ABTT was applied for monitoring the pH changes in living cells and visualizing the pH fluctuations under oxidative stress successfully. These results elucidated great potential of ABTT in understanding pH-dependent physiological and pathological processes.  相似文献   
82.
A self-modified film electrode consisting of homogeneous snowflake-shaped nanoparticles on the amorphous carbon substrate (HNAC) was prepared by low temperature carbonization of phenolic resin. Such a unique structure was beneficial to enhance the electroanalysis signal responds. Simultaneous detection of DA and UA was performed on the HNAC using differential pulse voltammetry (DPV) at pH 8 phosphate buffer. The well-defined oxidation peak potential separation reached 260 mV between DA and UA. Meanwhile, the detection limit of HNAC were 0.401 μM (DA) and 2.800 μM (UA).  相似文献   
83.
Prussian blue nanoparticles (PBNPs) have peroxidase-like activity for H2O2. However, PB alone have poor electrochemical performances. Herein, a strategy was proposed by direct in-situ growth PBNPs onto gold nanowires (AuNWs) surface to obtain the peroxidase-like activity with about 4.05 times higher than that of PBNPs alone. PBNPs@AuNWs was employed to construct a non - enzymatic electrochemical H2O2 sensor with the detection limit of 5.3×10−9 mol/L (S/N=3). The sensor was successfully used to detect H2O2 in human serum samples or secreted from living HeLa cells. It may be a competitive candidate for H2O2 assaying in biological samples or cellular investigation.  相似文献   
84.
The development and fabrication of a simple, portable, and sensitive detection tool to precisely monitor nitrite level is of growing importance in electrochemistry research, given the strong interest in the protection of drinking water quality, treatment of wastewater, food production, and control of remediation processes. This work describes the fabrication of a simple, cost-effective, pen-type electrochemical sensor based on bimetallic gold and tungsten nanoparticles electrochemically decorated on graphene-chitosan modified pencil graphite electrode (PGE) for the trace detection of nitrite in real samples. The prepared nanocomposite was characterized using XRD, SEM, and EDS. The electrochemical behavior of the sensor was evaluated by cyclic voltammetry (CV) and impedance electrochemical spectroscopy (EIS). Results revealed that the proposed sensor displayed excellent electrocatalytic activity towards electro-oxidation of nitrite with an irreversible redox reaction. The AuNPs-WNPs@Gr-Chi/PGE sensor exhibited excellent analytical performance with a wide linear range from 10 to 250 μM towards nitrite. The LOD and LOQ were calculated to be 0.12 μM and 0.44 μM, respectively. The designed electrochemical sensor was successfully applied for the detection of nitrite in water, milk, and natural fruit juice samples.  相似文献   
85.
The present work deals with fabrication and characterization of the zinc oxide (ZnO) nanowire based novel two-electrode capacitive biosensors on flexible Polyethylene terephthalate (PET) substrates for accurate estimation of glucose by analyzing the fundamental dielectric nature of the relevant sample. The morphology and crystalline quality of grown nanowires are analyzed by using field-emission scanning electron microscope (FESEM) and X-ray diffractometer (XRD), respectively. Current and capacitance values of the device have been studied for ten different glucose concentrations relevant to the physiological standards. The analytical performance of the devices in terms of enzyme activity, reliability and flexibility has also been evaluated.  相似文献   
86.
Bimetallic CuCo composites are prepared by calcinating copper hexacyanocobaltate precursor in N2 atmosphere. The CuCo modified electrodes are fabricated for nonenzymatic glucose sensing in the alkaline electrolyte. The glucose can be directly electro-oxidized on the surface of the electrode catalyst mediated by the redox couples of Cu and Co. The optimal glucose sensor exhibits a high sensitivity (567 μA ⋅ mM−1 ⋅ cm−2) in the range up to 825 μM with a detection limit of 3 μM and acceptable selectivity. The sensor can also be applied in serum samples. This work provides a facile and easily-scalable synthesis method of electrocatalysts for nonenzymatic glucose sensors.  相似文献   
87.
A highly sensitive amperometric Prussian blue-based hydrogen peroxide sensor was developed using 3D pyrolytic carbon microelectrodes. A 3D printed multielectrode electrochemical cell enabled simultaneous highly reproducible Prussian blue modification on multiple carbon electrodes. The effect of oxygen plasma pre-treatment and deposition time on Prussian blue electrodeposition was studied. The amperometric response of 2D and 3D sensors to the addition of hydrogen peroxide in μM and sub-μM concentrations in phosphate buffer was investigated. A high sensitivity comparable to flow injection systems and a detection limit of 0.16 μM was demonstrated with 3D pyrolytic carbon microelectrodes at stirred batch condition  相似文献   
88.
Hierarchical porous tubular biochar (PTBC) was prepared by selectively removing lignin simply according to reverse the pyrolysis sequence of cellulose. The properties of the PTBC sample were characterized by XRD, SEM, TEM, Raman spectra, cyclic voltammetry and electrochemical impedance spectroscopy. The electrochemical performances of PTBC modified on the screen-printing electrode illustrated excellent detection of lead ions (lead (II)) in water with the linear range (0.5–120 μg/L) and the detection limit (0.02 μg/L) by in-situ bismuth film square wave anode stripping voltammetry.  相似文献   
89.
In this work, an economically viable, very low cost, indigenous, ubiquitously available electrochemical sensor based on bimetallic nickel and tungsten nanoparticles modified pencil graphite electrode (NiNP-WNP@PGE) was fabricated for the sensitive and selective detection of bisphenol A (BPA). The NiNP-WNP@PGE sensor was prepared by a facile electrochemical one step co-deposition method. The prepared nanocomposite was morphologically characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), electrochemically by cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The proposed sensor displayed high electrocatalytic activity towards electro-oxidation of BPA with one irreversible peak. The fabricated sensor displayed a wide detection window between 0.025 μM and 250 μM with a limit of detection of 0.012 μM. PGE sensor was successfully engaged for the detection of BPA in bottled water, biological, and baby glass samples.  相似文献   
90.
In this work we report an easy and efficient way to fabricate nanostructured cobalt oxide (Co3O4) thin films as a non-enzymatic sensor for H2O2 detection. Co3O4 thin films were grown on ITO glass substrates via the sol-gel method and characterized with several techniques including X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and optical absorbance. The Co3O4 thin films’ performance regarding hydrogen peroxide detection was studied in a 0.1 M NaOH solution using two techniques, cyclic voltammetry (CV) and amperometry. The films exhibited a high sensitivity of 1450 μA.mM−1.cm−2, a wide linear range from 0.05 μM to 1.1 mM, and a very low detection limit of 18 nM. Likewise, the Co3O4 thin films produced showed an exceptional stability and a high selectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号